Tuesday, August 16, 2011

Proof of Concept for Translating Brain Waves into Speech

Proof of Concept for Translating Brain Waves into Speech

Proof of Concept for Translating Brain Waves into Speech

In an early step toward letting severely paralyzed people speak with their thoughts, University of Utah researchers translated brain signals into words using two grids of 16 microelectrodes implanted beneath the skull but atop the brain.

“We have been able to decode spoken words using only signals from the brain with a device that has promise for long-term use in paralyzed patients who cannot now speak,” says Bradley Greger, an assistant professor of bioengineering.

Because the method needs much more improvement and involves placing electrodes on the brain, he expects it will be a few years before clinical trials on paralyzed people who cannot speak due to so-called “locked-in syndrome.” The Journal of Neural Engineering’s September issue is publishing Greger’s study showing the feasibility of translating brain signals into computer-spoken words.

The University of Utah research team placed grids of tiny microelectrodes over speech centers in the brain of a volunteer with severe epileptic seizures. The man already had a craniotomy – temporary partial skull removal – so doctors could place larger, conventional electrodes to locate the source of his seizures and surgically stop them.

Using the experimental microelectrodes, the scientists recorded brain signals as the patient repeatedly read each of 10 words that might be useful to a paralyzed person: yes, no, hot, cold, hungry, thirsty, hello, goodbye, more and less.

Later, they tried figuring out which brain signals represented each of the 10 words. When they compared any two brain signals – such as those generated when the man said the words “yes” and “no” – they were able to distinguish brain signals for each word 76 percent to 90 percent of the time.

When they examined all 10 brain signal patterns at once, they were able to pick out the correct word any one signal represented only 28 percent to 48 percent of the time – better than chance (which would have been 10 percent) but not good enough for a device to translate a paralyzed person’s thoughts into words spoken by a computer.

“This is proof of concept,” Greger says, “We’ve proven these signals can tell you what the person is saying well above chance. But we need to be able to do more words with more accuracy before it is something a patient really might find useful.”

People who eventually could benefit from a wireless device that converts thoughts into computer-spoken spoken words include those paralyzed by stroke, Lou Gehrig’s disease and trauma, Greger says. People who are now “locked in” often communicate with any movement they can make – blinking an eye or moving a hand slightly – to arduously pick letters or words from a list.

University of Utah colleagues who conducted the study with Greger included electrical engineers Spencer Kellis, a doctoral student, and Richard Brown, dean of the College of Engineering; and Paul House, an assistant professor of neurosurgery. Another coauthor was Kai Miller, a neuroscientist at the University of Washington in Seattle.

The research was funded by the National Institutes of Health, the Defense Advanced Research Projects Agency, the University of Utah Research Foundation and the National Science Foundation.

Photo Gallery: The Brain Speaks

This photo shows two kinds of electrodes sitting atop a severely epileptic patient's brain after part of his skull was removed temporarily. The larger, numbered, button-like electrodes are ECoGs used by surgeons to locate and then remove brain areas responsible for severe epileptic seizures. While the patient had to undergo that procedure, he volunteered to let researchers place two small grids -- each with 16 tiny "microECoG" electrodes -- over two brain areas responsible for speech. These grids are at the end of the green and orange wire bundles, and the grids are represented by two sets of 16 white dots since the actual grids cannot be seen easily in the photo. University of Utah scientists used the microelectrodes to translate speech-related brain signals into actual words -- a step toward future machines to allow severely paralyzed people to speak.

The study used a new kind of nonpenetrating microelectrode that sits on the brain without poking into it. These electrodes are known as microECoGs because they are a small version of the much larger electrodes used for electrocorticography, or ECoG, developed a half century ago.

From the Source:Scientists Decode Words from Brain Signals


Post a Comment

Design by sudhanshu. Converted To Web By SUDHANSHU RATNA THAKUR